Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Mol Cancer ; 23(1): 78, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643157

BACKGROUND: The identification of novel therapeutic strategies to overcome resistance to the MEK inhibitor trametinib in mutant KRAS lung adenocarcinoma (LUAD) is a challenge. This study analyzes the effects of trametinib on Id1 protein, a key factor involved in the KRAS oncogenic pathway, and investigates the role of Id1 in the acquired resistance to trametinib as well as the synergistic anticancer effect of trametinib combined with immunotherapy in KRAS-mutant LUAD. METHODS: We evaluated the effects of trametinib on KRAS-mutant LUAD by Western blot, RNA-seq and different syngeneic mouse models. Genetic modulation of Id1 expression was performed in KRAS-mutant LUAD cells by lentiviral or retroviral transductions of specific vectors. Cell viability was assessed by cell proliferation and colony formation assays. PD-L1 expression and apoptosis were measured by flow cytometry. The anti-tumor efficacy of the combined treatment with trametinib and PD-1 blockade was investigated in KRAS-mutant LUAD mouse models, and the effects on the tumor immune infiltrate were analyzed by flow cytometry and immunohistochemistry. RESULTS: We found that trametinib activates the proteasome-ubiquitin system to downregulate Id1 in KRAS-mutant LUAD tumors. Moreover, we found that Id1 plays a major role in the acquired resistance to trametinib treatment in KRAS-mutant LUAD cells. Using two preclinical syngeneic KRAS-mutant LUAD mouse models, we found that trametinib synergizes with PD-1/PD-L1 blockade to hamper lung cancer progression and increase survival. This anti-tumor activity depended on trametinib-mediated Id1 reduction and was associated with a less immunosuppressive tumor microenvironment and increased PD-L1 expression on tumor cells. CONCLUSIONS: Our data demonstrate that Id1 expression is involved in the resistance to trametinib and in the synergistic effect of trametinib with anti-PD-1 therapy in KRAS-mutant LUAD tumors. These findings suggest a potential therapeutic approach for immunotherapy-refractory KRAS-mutant lung cancers.


Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Pyridones , Pyrimidinones , Mice , Animals , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Down-Regulation , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen/metabolism , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma/genetics , Disease Models, Animal , Cell Line, Tumor , Tumor Microenvironment
2.
Front Immunol ; 14: 1272570, 2023.
Article En | MEDLINE | ID: mdl-37841258

Background: Harnessing the anti-tumor immune system response by targeting the program cell death protein (PD-1) and program cell death ligand protein (PD-L1) axis has been a major breakthrough in non-small cell lung cancer (NSCLC) therapy. Nonetheless, conventional imaging tools cannot accurately assess response in immunotherapy-treated patients. Using a lung cancer syngeneic mouse model responder to immunotherapy, we aimed to demonstrate that [89Zr]-anti-PD-1 immuno-PET is a safe and feasible imaging modality to assess the response to PD-1/PD-L1 blockade in NSCLC. Materials and methods: A syngeneic mouse model responder to anti-PD-1 therapy was used. Tumor growth and response to PD-1 blockade were monitored by conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) PET scans. Additionally, tumor lymphocyte infiltration was analyzed by the use of an [89Zr]-labeled anti-PD-1 antibody and measured as 89Zr tumor uptake. Results: Conventional [18F]-FDG-PET scans failed to detect the antitumor activity exerted by anti-PD-1 therapy. However, [89Zr]-anti-PD-1 uptake was substantially higher in mice that responded to PD-1 blockade. The analysis of tumor-infiltrating immune cell populations and interleukins demonstrated an increased anti-tumor effect elicited by activation of effector immune cells in PD-1-responder mice. Interestingly, a positive correlation between [89Zr]-anti-PD-1 uptake and the proportion of tumor-infiltrating lymphocytes (TILs) was found (Cor = 0.8; p = 0.001). Conclusion: Our data may support the clinical implementation of immuno-PET as a promising novel imaging tool to predict and assess the response of PD-1/PD-L1 inhibitors in patients with NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Positron Emission Tomography Computed Tomography , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/metabolism , Fluorodeoxyglucose F18/metabolism , B7-H1 Antigen/metabolism
3.
Cancers (Basel) ; 12(11)2020 Oct 28.
Article En | MEDLINE | ID: mdl-33126649

The use of PD-1/PD-L1 checkpoint inhibitors in advanced NSCLC is associated with longer survival. However, many patients do not benefit from PD-1/PD-L1 blockade, largely because of immunosuppression. New immunotherapy-based combinations are under investigation in an attempt to improve outcomes. Id1 (inhibitor of differentiation 1) is involved in immunosuppression. In this study, we explored the potential synergistic effect of the combination of Id1 inhibition and pharmacological PD-L1 blockade in three different syngeneic murine KRAS-mutant lung adenocarcinoma models. TCGA analysis demonstrated a negative and statistically significant correlation between PD-L1 and Id1 expression levels. This observation was confirmed in vitro in human and murine KRAS-driven lung cancer cell lines. In vivo experiments in KRAS-mutant syngeneic and metastatic murine lung adenocarcinoma models showed that the combined blockade targeting Id1 and PD-1 was more effective than each treatment alone in terms of tumor growth impairment and overall survival improvement. Mechanistically, multiplex quantification of CD3+/CD4+/CD8+ T cells and flow cytometry analysis showed that combined therapy favors tumor infiltration by CD8+ T cells, whilst in vivo CD8+ T cell depletion led to tumor growth restoration. Co-culture assays using CD8+ cells and tumor cells showed that T cells present a higher antitumor effect when tumor cells lack Id1 expression. These findings highlight that Id1 blockade may contribute to a significant immune enhancement of antitumor efficacy of PD-1 inhibitors by increasing PD-L1 expression and harnessing tumor infiltration of CD8+ T lymphocytes.

...